Extremal length and Dirichlet problem on Klein surfaces
نویسندگان
چکیده
منابع مشابه
The Dirichlet problem on quadratic surfaces
We give a fast, exact algorithm for solving Dirichlet problems with polynomial boundary functions on quadratic surfaces in Rn such as ellipsoids, elliptic cylinders, and paraboloids. To produce this algorithm, first we show that every polynomial in Rn can be uniquely written as the sum of a harmonic function and a polynomial multiple of a quadratic function, thus extending a theorem of Ernst Fi...
متن کاملBounded Outdegree and Extremal Length on Discrete Riemann Surfaces
Let T be a triangulation of a Riemann surface. We show that the 1-skeleton of T may be oriented so that there is a global bound on the outdegree of the vertices. Our application is to construct extremal metrics on triangulations formed from T by attaching new edges and vertices and subdividing its faces. Such refinements provide a mechanism of convergence of the discrete triangulation to the cl...
متن کاملMiranda-persson’s Problem on Extremal Elliptic K3 Surfaces
In one of their early works, Miranda and Persson have classified all possible configurations of singular fibers for semistable extremal elliptic fibrations on K3 surfaces. They also obtained the Mordell-Weil groups in terms of the singular fibers except for 17 cases where the determination and the uniqueness of the groups were not settled. In this paper, we settle these problems completely. We ...
متن کاملOn Extremal Elliptic K3 Surfaces
In [MP2], R.Miranda and U.Persson have classified possible semi-stable fibrations. The determination of all semi-stable fibrations has been done in [MP3] and [ATZ]. In this paper, we first classify all possible configurations of unsemi-stable fibrations (cf. Theorem 2.4). Then we calculate the possible Mordell-Weil Groups for Case(A) (cf.Theorem 3.1), i.e., the case where each singular fibre of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2019
ISSN: 1232-9274
DOI: 10.7494/opmath.2019.39.2.281